

Condor Gold plc

7th Floor 39 St. James's Street London SW1A 1JD Telephone +44 020 74081067 Fax: +44 020 74938633

9th September 2013

Condor Gold plc ("Condor" or "the Company")

23,598m Drilling Programme Completed on La India Project, Nicaragua.

Condor (AIM:CNR), a gold exploration company focused on delineating a large commercial reserve on its 100%-owned La India Project in Nicaragua, which hosts a CIM compliant Mineral Resource of 2.4 Million oz gold at 4.6g/t, is pleased to announce the completion of a 23,598m drilling programme on La India Project. The total drilled by Condor and previous explorers on La India Project now stands at 61,800m. When all assay results have been returned mineral resource updates, with an emphasis on defining open pit resources will be completed on the La India and America Vein Sets, and a maiden mineral resource will be estimated for the Central Breccia Prospect.

Highlights

- 23,598m drilling programme completed on La India Project since November 2012 including:
- 13,956m drilling programme completed on La India Open Pit resource aimed at proving over 1M oz gold in the Indicated Category ahead of a PFS.
- 1836m geotechnical drilling programme designed to increase pit angle used in PEA.
 Report due in September 2013.
- 5,486m drilling programme on America Vein Set, all assay results received.
- 2,680m drilling on Central Breccia Prospect, all assay results received.
- Gold Mineral Resource update due by 31st October 2013.

Mark Child. Chairman and CEO commented:

"Condor has completed a 23,598m drilling programme on La India Project since November 2012, bringing the total drilled by Condor to 43,697m and by Condor and previous explorers to 61,800m. Infill drilling from the recently completed 13,465m, brings the total drilled to 33,954m within La India Open Pit area. The results show continuity of gold mineralization and grade. Drilling within the high grade ore shoots returned some of the best intercepts to date. See tables 1 and 2 below.

The focus of the recent drilling has been to prove over 1M oz gold in the Indicated category in high grade open pit resources, while maintaining circa 200,000 oz gold in the Indicated category in underground resources in preparation for a Pre-Feasibility Study ("PFS"). A resource update for La India Project is scheduled to be completed by SRK Consulting (UK) Ltd by the end of October 2013".

Since the last gold mineral resource update was announced in September 2012 Condor has completed over 162 drill holes for 23,598m of drilling on the Company's flagship La India Project. The total drilled by Condor and previous explorers on La India Project now stands at 61,800m. The majority of the recent drilling has been infill drilling on the La India Open Pit area designed to convert potentially open-pittable Inferred resource ounces to the more confident Indicated category. Smaller exploration drilling programmes have also been completed on the America Vein Set and Central Breccia Prospect designed to test for open pit potential and increase the overall size of the gold resource at La India Project. Since the drilling campaign started in November 2012 a total of 162 drill holes for 23,598m drilling has been completed with up to 5 drilling rigs working simultaneously: 21,558m of diamond core has been collected, the balance being RC drilling. All drilling rigs have now been demobilised.

Assay results have been received for all but two of the 85 holes drilled on La India and all of those drilled on America and the Central Breccia. The best intercepts for the recent drilling programme are listed in Tables 2 and 4 below, whereas Tables 1 and 3 and 5 show the best intercepts of all drilling to date by Condor and previous explorers on each of the prospect areas.

Table 1. Top ten drill intercepts on La India Open Pit area from 186 drillholes for 33,954m

drilled to date by Condor and previous explorers.

<u> </u>	armoute date by corract and provides expicions.											
Rank	Hole_ID	From (m)	To (m)	Drill Width (m)	True Width (m)	Gold (g/t)	Silver (g/t)	Vein				
1	LIDC109	173.15	185.35	12.20	10.8	34.79	27.3	India				
2	LIDC121	111.25	117.90	6.65	6.0	32.23	39.5	India				
3	LIRC105	25.00	51.00	26.00	25.1	7.73	11.1	India				
4	LIDC152	193.80	214.88	21.08	16.1	10.24	7.8	India				
5	LIDC239	14.40	19.20	4.80	4.4	37.24	120.3	India hangingwall				
6	LIRC120	97.00	108.00	11.00	11.0	10.45	11.1	India				
7	LIRC102	0.00	16.00	16.00	15.5	7.39	12.3	India hangingwall				
8	LIDC193	20.70	27.50	6.80	6.5	13.99	21.8	India				
9	LIDC132	1.00	8.00	7.00	6.8	12.48	11.9	India footwall				
10	LIRC240	4.00	25.00	21.00	20.3	3.33	5.2	India hangingwall				

True width is based on the current interpretation of the veins and may be revised in the future. Top ten intercepts ranked by grade multiplied by true width.

Table 2. Top twenty drill intercepts on La India Open Pit area from 13,465m out of the 13,956m infill drill holes completed since September 2012.

10,000	13,330m mm drin noies completed since September 2012.												
Rank	Hole_ID	From (m)	To (m)	Drill Width (m)	True Width (m)	Gold (g/t)	Silver (g/t)	Vein					
1	LIDC239	14.40	19.20	4.80	4.4	37.24	120.3	India hangingwall					
2	LIDC193	20.70	27.50	6.80	6.5	13.99	21.8	India					
3	LIDC170	98.10	123.90	18.00	16.4	4.18	5.1	amalgamated India remnant wallrock					
4	LIRC240	4.00	25.00	21.00	20.3	3.33	5.2	India hangingwall					
5	LIDC165	103.35	124.60	11.95	11.1	5.72	7.4	amalgamated India remnant wallrock					
6	LIDC161	138.20	148.20	17.15	14.6	4.16	4.7	amalgamated India remnant wallrock					
7	LIDC308	194.90	214.10	19.20	14.7	3.60	10.7	India upper					
8	LIDC315	141.90	146.85	4.95	4.3	12.25	16.6	India					
9	LIDC183	50.74	93.10	41.26	35.7	1.41	2.0	amalgamated India remnant wallrock					
10	LIDC239	19.70	31.10	11.40	10.3	3.60	6.0	India footwall					
11	LIDC251	140.90	153.65	12.75	11.7	3.12	6.8	India upper					
12	LIDC172	100.50	117.65	17.15	15.5	2.21	8.0	India lower					
13	LIDC171	104.90	107.78	2.88	2.8	12.16	15.0	India					
14	LIDC176	7.80	24.70	16.90	9.7	3.49	18.3	California					
15	LIDC284	129.20	141.80	12.60	11.8	2.86	3.3	India lower					
16	LIDC313	220.25	226.75	6.50	5.0	6.72	16.1	India					
17	LIDC232	177.80	194.02	14.22	13.3	2.30	2.4	India wallrock amalgamated					
18	LIDC312	167.25	177.50	10.25	7.9	3.85	9.1	India upper					

19	LIDC307	202.10	217.20	15.10	13.7	2.07	13.8	India
20	LIRC244	15.00	40.00	25.00	24.1	1.17	4.4	India

True width is based on the current interpretation of the veins and may be revised in the future. Top twenty intercepts ranked by grade multiplied by true width.

Table 3. Top ten drill intercepts on America Vein Set from 90 drillholes for 11,515m drilled to date by Condor and previous explorers.

Rank	Hole_ID	From (m)	To (m)	Drill Width (m)	True Width (m)	Gold (g/t)	Silver (g/t)	Vein
1	LIDC280	145.85	154.20	8.35	7.8	5.28	6.6	America
2	LIRC215	13.00	32.00	19.00	18.7	1.98	2.5	Escondido Upper
3	LIDC211	174.00	192.80	18.80	18.5	1.53	1.8	Am-Esc hangingwall
4	LIDC179	92.85	105.60	4.65	4.4	6.11	3.3	Constancia-Escondido intersection
5	LIDC275	2.70	13.10	10.40	1.8	14.05	40.8	Constancia
6	LIDC216	112.80	114.60	1.80	1.8	13.31	8.0	America
7	P040	93.80	98.10	4.30	3.1	6.81	18.0	Guapinol
8	LIDC023	62.30	65.30	3.00	2.3	8.52	2.4	Constancia
9	LIRC215	38.00	48.00	10.00	9.8	1.70	2.2	Escondido Lower
10	LIRC190	34.00	37.00	3.00	2.8	5.67	6.5	America

True width is based on the current interpretation of the veins and may be revised in the future. Top twenty intercepts ranked by grade multiplied by true width.

Table 4. Best drill intercepts on the America Vein Set from the 5486m drill holes completed since September 2012.

Rank	Hole_ID	From (m)	To (m)	Drill Width (m)	True Width (m)	Gold (g/t)	Silver (g/t)	Vein
1	LIDC280	145.85	154.20	8.35	7.8	5.28	6.6	America
2	LIRC215	13.00	32.00	19.00	18.7	1.98	2.5	America-Escondido Upper
3	LIDC211	174.00	192.80	18.80	18.5	1.53	1.8	America-Escondido hangingwall
4	LIDC179	92.85	105.60	4.65	4.4	6.11	3.3	Constancia-Escondido intersection
5	LIDC275	2.70	13.10	10.40	1.8	14.05	40.8	Constancia
6	LIDC216	112.80	114.60	1.80	1.8	13.31	8.0	America

True width is based on the current interpretation of the veins and may be revised in the future. Top six intercepts ranked by grade multiplied by true width.

Table 5. Top five drill intercepts on Central Breccia from 17 drillholes for 2,669m drilled to date by Condor.

Rank	Hole_ID	From (m)	To (m)	Drill Width (m)	True Width (m)	Gold (g/t)	Silver (g/t)	Vein
1	LIDC097	46.30	60.00	13.70	8.8	6.70	4.9	
2	LIDC101	56.35	102.15	45.80	11.9	4.24	3.5	
3	LIDC295	29.06	70.90	41.84	26.9	1.38	1.8	
4	LIDC099	46.68	85.38	38.70	24.9	1.28	2.2	
5	LIDC297	33.72	109.50	75.78	37.9	0.79	1.5	

True width is based on the current interpretation of the veins and may be revised in the future. Top five intercepts ranked by grade multiplied by true width.

La India Vein Set hosts a resource of 12Mt at 4.0g/t for 1.5 Million oz gold including an open pit resource of 8.21 million tonnes at 3.6g/t for 954,000 oz gold of which 534,000 oz gold at 3.9 g/t is in the Indicated Category and 420,000 oz gold at 3.3g/t in the Inferred Category. Of the underground resource 97,000 oz of the underground resource is Indicated with the balance Inferred. Based on the September 2012 mineral resource a Preliminary Economic Assessment ('PEA' – see announcement dated 5th March 2013) suggested that an 800k oz gold open pit was potentially feasible using a conservative assumption of 40-42° pit slope angles.

Since the PEA was completed a further 85 drill holes for 13,956m of infill, and depth and strike extension drilling have been completed at 50m drill spacing which combined with underground grade control samples from the historic mine is considered sufficient to provide Indicated level of confidence in the next Mineral Resource update. In addition, 11 drill holes for 1,836m of drilling have been completed to provide geotechnical data, for a total of 96 drill holes for 15,792m. The

geotechnical drilling will contribute data towards the calculation of a more accurate pit slope angle for use in an updated Whittle pit model. A report on the results of the geotechnical drilling programme will be announced in September 2013. The infill resource drilling will allow the entire open pit resource to be estimated at the more confident Indicated category required for inclusion in an open pit mining pre-feasibility study.

The 50m spaced drilling grid has been extended beyond the 800k oz gold open pit shell used in the PEA in order to accommodate a potentially larger open pit should the geotechnical study demonstrate that steeper pit walls than those assumed for the PEA are feasible, and also to accommodate potential improvements in the mineral resource as a result of the latest drilling. A Whittle Pit model, incorporating the ongoing geotechnical study, will be included in the next resource update in order to determine how much of the resource will be assigned open pit parameters. The latest drilling programme is expected to increase the Indicated resource at La India Open Pit to over 1M oz gold.

In addition to simply converting Inferred resource into the Indicated category the latest drilling programme was also designed to test for additional resource ounces by drilling along strike of a high-grade zone of gold mineralisation defined at depths of between 80m and 200m below surface at the southern end of the India-California structure where the gold mineralisation remains open and untested.

Assay results have been received for all but two of the drill holes, accounting for 15,301m of the drilling programme. Results for the latest 23 drill holes for 6,307m which have been received since the last drilling update announced in July are presented in the table below. Intercepts generally confirm the geological model used in the current Inferred mineral resource with a best intercept of 19.20m (14.7m true width) at 3.60g/t gold in the Central North high-grade shoot (drill hole LIDC308). The drilling programme includes converting lower grade zones such as the 500-550 cross-sections in the South and the 1400 cross-section in the North to the Indicated category since they fall within the influence of the open pit.

Table 6. Significant drill intercepts for the latest 23 drill holes for 6,307m of the current drill

programme on the India-California veins.

Prospect	Drill hole ID	From	То	Drill Width	True Width	Au (ppm)	Ag (ppm)	Vein (vein assignments subject to revision)
Central- North	LIDC289B	120.10	148.55	28.45	21.8	0.97	2.2	India
1100	including	127.70	131.40	3.70	2.8	3.08	3.5	
North	LIDC292	46.00	48.60	2.60	2.5	-	-	mine cavity
1750		61.00	61.70	0.70	0.7	0.84	1.1	India
North	LIDC294	147.85	149.05	1.20	1.1	3.46	11.2	Cal 2
1450		185.30	190.95	5.65	5.1	0.81	3.1	Cal 1
		205.20	206.30	1.10	1.0	2.70	21.9	India upper
		215.70	217.85	2.15	1.9	6.96	5.7	India lower
Central- North	LIDC296	98.00	99.60	1.60	1.4	0.82	0.7	Cal 4
1050		106.40	107.70	1.30	1.1	1.78	2.9	Cal 3
		133.20	134.80	1.60	1.4	7.99	11.7	Cal 2
		141.10	142.69	1.59	1.3	3.30	5.6	Cal 1
		170.70	171.30	0.60	0.5	3.02	9.2	India
South 100	LIDC300	158.45	161.20	2.75	2.3	0.89	1.2	India
Central- Centre	LIDC301	77.00	78.40	1.40	1.1	1.66	3.8	Cal 2
1000		89.60	91.50	1.90	1.6	1.30	5.2	Cal 1

1			,		1			
		147.65	147.95	0.30	0.2	1.31	2.4	India upper 3
		160.80	161.30	0.50	0.4	1.04	3.8	India upper 2
		168.00	168.60	0.60	0.5	1.39	1.0	India upper
		169.85	172.60	2.75	2.3	0.79	1.5	India middle
		182.30	183.10	0.80	0.7	6.94	3.2	India lower
North 1500	LIDC302	185.85	189.80	3.95	3.8	2.31	2.7	India upper
		200.30	200.90	0.60	0.6	1.05	1.4	India lower
Central- Centre	LIDC303	114.80	119.40	4.60	4.2	3.88	14.7	Cal 1
950		130.30	132.80	2.50	2.3	1.82	2.2	India upper
		152.50	153.10	0.60	0.5	2.28	1.5	India mid 2
		163.60	164.80	1.20	1.1	1.47	1.0	India mid 1
		194.40	194.75	0.35	0.3	0.66	1.7	India lower
North 1400	LIDC304	80.70	81.74	1.04	1.0	0.68	2.1	Cal 1
		158.00	163.50	5.50	5.2	0.62	2.0	India upper
		168.50	170.50	2.00	1.9	0.00	0.0	mine cavity
		172.60	173.30	0.70	0.7	1.01	2.3	India footwall
Central South	LIDC305	111.60	112.00	0.40	0.4	1.36	2.9	Cal 1
450		133.00	139.40	6.40	6.0	3.35	3.3	India
South 300	LIDC306	179.70	180.55	0.85	0.5	1.46	2.8	Cal 2
		184.25	184.45	0.20	0.1	2.24	2.4	Cal 1
		201.70	203.65	1.95	1.1	8.70	12.0	India hangingwall
		203.65	204.45	0.80	0.5		-	mine cavity
Central South 650	LIDC307	202.10	217.20	15.10	13.7	2.07	13.8	India
Central- North	LIDC308	49.80	57.20	7.40	5.7	2.79	3.8	Cal 4
1200		56.40	57.20	0.80	0.6	18.19	16.2	Cal 4
		144.70	145.00	0.30	0.2	1.16	1.0	Cal 3
		150.50	152.00	1.50	1.1	4.24	4.0	Cal 2
		157.10	161.10	4.00	3.1	2.87	23.0	Cal 1
		194.90	214.10	19.20	14.7	3.60	10.7	India upper
	including	196.10	205.60	9.50	7.3	6.82	19.3	
		221.80	225.40	3.60	2.8	4.09	5.6	India lower
Central South	LIDC309	118.55	118.75	0.20	0.2	1.92	1.5	Cal 2
500		132.30	133.10	0.80	0.7	0.98	1.1	Cal 1
		147.20	148.50	1.30	1.2	-	-	mine cavity
		148.50	151.40	2.90	2.6	4.96	6.5	India footwall
South 200	LIDC310	203.75	204.05	0.30	0.2	2.33	2.4	Cal 1
		210.30	220.90	10.60	8.4	1.27	2.3	India
	including	216.55	217.75	1.20	0.9	5.74	10.6	
Central South	LIDC311	135.75	137.00	1.25	1.2	0.52	1.1	Cal 1
600		197.00	213.85	16.85	15.8	1.41	2.3	India
	Including	197.00	197.70	0.70	0.7	1.76	1.2	
	Including	201.35	202.23	0.88	0.8	1.49	1.6	
	including	207.70	213.85	6.15	5.8	3.25	5.2	
South 250	LIDC312	148.10	148.45	0.35	0.3	1.78	3.9	Cal 2
		162.60	163.00	0.40	0.3	1.51	0.5	Cal 1
		167.25	177.50	10.25	7.9	3.85	9.1	India upper
	including	168.80	172.90	4.10	3.1	8.18	16.0	

	181.60	182.60	1.00	0.8	1.26	0.9	India lower
LIDC313	124.10	124.30	0.20	0.2	1.01	2.7	Cal 5
	138.10	139.50	1.40	1.1	0.86	2.7	Cal 4
	143.70	145.10	1.40	1.1	1.30	1.9	Cal 3
	174.60	176.30	1.70	1.3	1.25	2.0	Cal 2
	187.60	191.75	4.15	3.2	2.73	4.8	Cal 1
	220.25	226.75	6.50	5.0	6.72	16.1	India
including	221.80	223.60	1.80	1.4	22.08	45.7	
LIDC314	134.30	136.70	2.40	2.2	0.46	8.0	Cal 1
	157.60	157.90	0.30	0.3	0.89	1.3	India upper hangingwall
	157.90	159.10	1.20	1.1	0.00	0.0	mine cavity
	164.20	171.80	7.60	6.9	0.40	1.0	India lower
LIDC315	141.90	146.85	4.95	4.3	12.25	16.6	India
LIDC316	133.90	134.05	0.15	0.1	1.05	8.0	Cal 1
	163.70	171.00	7.30	6.6	1.82	4.7	India
LIDC317	95.80	102.80	7.00	6.7	3.32	9.8	Cal 2
	125.00	125.40	0.40	0.4	1.30	6.3	Cal 1
	141.70	146.90	5.20	4.9	1.85	3.6	India
LIDC318	168.00	168.90	0.90	8.0	1.80	1.4	Cal 2
	177.10	178.70	1.60	1.5	1.24	-0.1	Cal 1
	188.50	195.20	6.70	6.1	1.80	1.8	India
	including LIDC314 LIDC315 LIDC316 LIDC317	LIDC313 124.10 138.10 143.70 174.60 187.60 220.25 including 221.80 LIDC314 134.30 157.60 157.90 164.20 LIDC315 141.90 LIDC316 133.90 163.70 LIDC317 95.80 125.00 141.70 LIDC318 168.00 177.10	LIDC313	LIDC313	LIDC313	LIDC313 124.10 124.30 0.20 0.2 1.01 138.10 139.50 1.40 1.1 0.86 143.70 145.10 1.40 1.1 1.30 174.60 176.30 1.70 1.3 1.25 187.60 191.75 4.15 3.2 2.73 220.25 226.75 6.50 5.0 6.72 including 221.80 223.60 1.80 1.4 22.08 LIDC314 134.30 136.70 2.40 2.2 0.46 157.60 157.90 0.30 0.3 0.89 157.90 159.10 1.20 1.1 0.00 164.20 171.80 7.60 6.9 0.40 LIDC315 141.90 146.85 4.95 4.3 12.25 LIDC316 133.90 134.05 0.15 0.1 1.05 163.70 171.00 7.30 6.6 1.82 LIDC317 95.80 <t< td=""><td>LIDC313 124.10 124.30 0.20 0.2 1.01 2.7 138.10 139.50 1.40 1.1 0.86 2.7 143.70 145.10 1.40 1.1 1.30 1.9 174.60 176.30 1.70 1.3 1.25 2.0 187.60 191.75 4.15 3.2 2.73 4.8 220.25 226.75 6.50 5.0 6.72 16.1 including 221.80 223.60 1.80 1.4 22.08 45.7 LIDC314 134.30 136.70 2.40 2.2 0.46 0.8 157.90 157.90 0.30 0.3 0.89 1.3 157.90 159.10 1.20 1.1 0.00 0.0 164.20 171.80 7.60 6.9 0.40 1.0 LIDC315 141.90 146.85 4.95 4.3 12.25 16.6 LIDC316 133.90 134.05 0.15</td></t<>	LIDC313 124.10 124.30 0.20 0.2 1.01 2.7 138.10 139.50 1.40 1.1 0.86 2.7 143.70 145.10 1.40 1.1 1.30 1.9 174.60 176.30 1.70 1.3 1.25 2.0 187.60 191.75 4.15 3.2 2.73 4.8 220.25 226.75 6.50 5.0 6.72 16.1 including 221.80 223.60 1.80 1.4 22.08 45.7 LIDC314 134.30 136.70 2.40 2.2 0.46 0.8 157.90 157.90 0.30 0.3 0.89 1.3 157.90 159.10 1.20 1.1 0.00 0.0 164.20 171.80 7.60 6.9 0.40 1.0 LIDC315 141.90 146.85 4.95 4.3 12.25 16.6 LIDC316 133.90 134.05 0.15

True width is an interpretation based on the current interpretation of the veins and may be revised in the future.

America Vein Set. All assay results have been returned for the 50 drill holes for 5486m drilling programme completed on the America Vein Set, which was initiated in December 2012 and completed in July this year. The America Vein Set contains 2.11Mt at 6.0g/t for 405,000 oz gold, of which 288,000 oz gold is in the interconnected America-Constancia-Escondido veins which were exploited through underground shrinkage-stopage mining between 1938 and 1956 with an estimated 40% of the total gold production from the La India Mining District, equivalent to approximately 250,000 oz gold at 13.5g/t extracted by selective mining of the high-grade core of the veins.

The drilling programme targeted remnant gold mineralisation in the wallrock of the historic mine workings with a focus on the structurally complex zone where the Constancia veins intercept a 60° flexure in the America-Escondido Vein. The development of wider veins and quartz breccia zones at this structurally complex zone has resulted in some wider zones of gold mineralisation and so drilling on a 50m spacing was continued to a depth of over 300m down-dip from surface in order to better test this zone. Since the last drilling update assay results have been returned for the final 5 holes drilled on the edge and at depth on the America-Escondido flexure zone, presented in the table below.

Table 7. Significant drill intercepts for the latest 5 drill holes for 965m of the current drill programme on the America Vein Set.

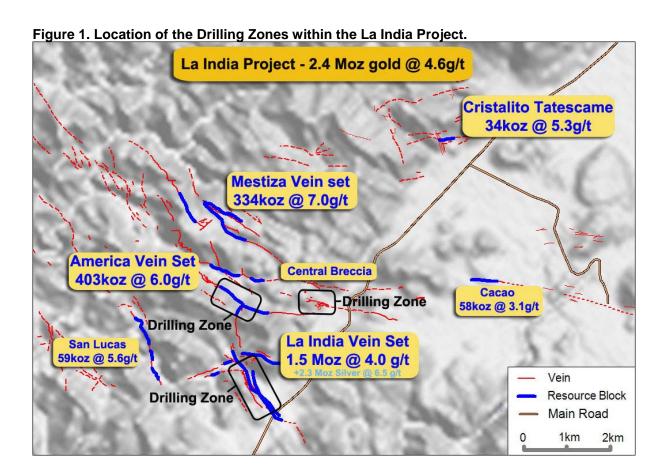
Prospect	Drill hole ID	From	То	Drill Width	True Width	Au (ppm)	Ag (ppm)	Vein (vein assignments subject to revision)
America	LIDC283	41.20	42.70	1.50	1.0	3.03	2.4	Constancia 2
A550		46.10	46.60	0.50	0.3	1.11	0.7	Constancia 1
		72.40	74.50	2.10	2.0	6.19	3.8	America
America	LIDC287	53.90	56.10	2.20	1.4	12.23	29.5	Constancia

A550		92.40	99.60	7.20	6.8	0.03	0.3	mine backfill
		99.60	107.60	8.00	7.5	0.29	1.6	America footwall
America	LIDC288	169.50	169.60	0.10	0.1	1.00	2.0	America 5
A450		188.10	188.30	0.20	0.2	1.49	3.4	America 4
		198.50	198.80	0.30	0.3	2.52	1.7	America 3
		212.85	213.00	0.15	0.1	1.18	2.0	America 2
		228.25	231.70	3.45	3.2	1.87	2.2	America 1
America	LIDC291	201.10	231.60	30.50	28.7	0.25	1.2	America
A500	including	209.60	210.00	0.40	0.4	1.42	6.2	America upper
	including	228.00	229.50	1.50	1.4	2.44	4.2	America lower
America A550	LIDC298	162.75	165.05	2.30	1.8	8.54	8.7	America

True width is an interpretation based on the current interpretation of the veins and may be revised in the future.

The **Central Breccia**, which was discovered by Condor geologists in 2011 has been defined within a 140m by 300m area at surface and returned a best drilling intercept of 45.80m at 4.24g/t gold from exploratory drilling undertaken in 2012 (see announcement dated 28th May 2012). A further 2321m of drilling has been completed on the Central Breccia Prospect to bring the total to 2669m drilled to date. The gold mineralisation is hosted by a hydrothermal breccia system with high-grade gold mineralised zones associated with intense argillic alteration and sulphide mineralisation within a low-grade background halo. The high-grade zones are variable at a decimetre-scale which requires close spaced drilling to obtain continuity between drill samples and confidently model the gold distribution. Drilling to date has confirmed the lateral dimensions shown at surface with high-grade mineralisation intercepted up to 100m below surface. The recent drilling results listed in Table 8 below.

Table 8. Significant drill intercepts for the latest 5 drill holes for 965m of the current drill


programme on the America Vein Set.

	On the Amer							Vein
Prospect	Drill hole ID	From	То	Drill Width	True Width	Au (ppm)	Ag (ppm)	(vein assignments subject to revision)
Central	LIDC260	6.08	45.60	39.52	35.8	0.51	1.6	Upper zone
Breccia	including	6.08	12.16	6.08	5.5	1.46	2.4	
	including	24.70	29.55	4.85	4.4	1.03	2.0	
		71.85	74.44	2.59	2.3	1.69	1.8	Lower zone
Central Breccia 500	LIDC272	82.08	150.48	68.40	44.0	0.14	1.0	Central Breccia
Central	LIDC278	42.56	70.32	27.76	17.8	0.33	1.3	Central Breccia
Breccia 600	including	45.60	51.68	6.08	3.9	0.69	1.2	
	including	59.90	60.25	0.35	0.2	2.32	3.1	
Central Breccia 600	LIDC281	45.60	48.00	2.40	1.5	0.88	2.6	Central Breccia
Central	LIDC285	59.21	61.15	1.94	1.2	3.09	5.0	Central Breccia upper
Breccia 500		181.95	217.40	35.45	22.8	0.22	1.9	background
Central	LIDC290	42.62	51.33	8.71	5.6	0.23	1.1	Central Breccia upper
Breccia 575		91.46	103.50	12.04	7.7	0.35	1.5	Central Breccia lower
Central Breccia 475	LIDC293	61.30	132.64	71.34	45.9	0.11	1.4	background
Central	LIDC295	29.06	70.90	41.84	26.9	1.38	1.8	Central Breccia
Breccia oblique	including	38.16	42.84	4.68	3.0	3.72	3.0	Central Breccia 1
	including	46.67	51.84	5.17	3.3	3.46	2.9	Central Breccia 2
Central	LIDC297	33.72	109.50	75.78	37.9	0.79	1.5	Central Breccia

Breccia oblique	Including	33.72	35.24	1.52	0.8	1.16	2.3	Central Breccia 4
	Including	45.88	60.86	14.98	7.5	2.05	2.6	Central Breccia 3
	Including	91.95	92.78	0.83	0.4	1.09	1.2	Central Breccia 1
	including	106.46	109.50	3.04	1.5	2.90	2.4	Central Breccia 2
Central	LIDC299	1.80	4.84	3.04	2.0	1.18	1.8	Central Breccia 4
Breccia 525		18.52	21.56	3.04	2.0	1.33	3.8	Central Breccia 3
		25.84	27.36	1.52	1.0	3.09	5.2	Central Breccia 2
		40.00	42.56	2.56	1.6	0.95	1.8	Central Breccia 1

True width is an interpretation based on the current interpretation of the veins and may be revised in the future.

A Mineral Resource update for the America Vein and a maiden mineral resource on the Central Breccia are currently underway. When assay results have been returned for the final two drill holes on La India Open Pit an updated independent gold mineral resource estimation will be released once geological modelling and the ongoing geotechnical study is completed.

Competent Person's Declaration

The information in this announcement that relates to the mineral potential, geology, Exploration Results and database is based on information compiled by and reviewed by Dr Luc English, the

Country Exploration Manager, who is a Chartered Geologist and Fellow of the Geological Society of London, and a geologist with eighteen years of experience in the exploration and definition of precious and base metal Mineral Resources. Luc English is a full-time employee of Condor Gold plc and has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration, and to the type of activity which he is undertaking to qualify as a Competent Person as defined in the June 2009 Edition of the AIM Note for Mining and Oil & Gas Companies. Luc English consents to the inclusion in the announcement of the matters based on their information in the form and context in which it appears and confirms that this information is accurate and not false or misleading.

- Ends -

For further information please visit www.condorgold.com or contact:

Condor Gold plc Mark Child, Executive Chairman and CEO Luc English, Country Manager

+44 (0) 20 7408 1067 Nicaragua +505 8854 0753

+303 0034 073

+44 (0) 20 7628 3396

144 (0) 20 7 020 000

Ocean Equities Limited Will Slack

+44 (0) 20 77864385

Roland Cornish

Farm Street Media Simon Robinson

+44 (0) 7593 340107

About Condor Gold plc:

Beaumont Cornish Limited

Condor Gold plc is an AIM listed exploration company focused on developing gold and silver resource projects in Central America. The Company was admitted to AIM on 31st May 2006 with the stated strategy to prove up CIM/JORC Resources in Nicaragua and El Salvador. Condor has seven 100% owned concessions in La India Mining District ("La India Project"); three 100% owned concessions in three other project areas and 20% in the Cerro Quiroz concession in Nicaragua. In El Salvador, Condor has 90% ownership of four licences in two project areas.

Condor's concession holdings in Nicaragua currently contain an attributable CIM/JORC compliant resource base of 2,497,000 ounces of gold equivalent at 4.6 g/t in Nicaragua and an attributable 1,004,000 oz gold equivalent at 2.6g/t JORC compliant resource base in El Salvador. The Resource calculations are compiled by independent geologists SRK Consulting (UK) Limited for Nicaragua, and Ravensgate and Geosure for El Salvador.

Disclaimer

Neither the contents of the Company's website nor the contents of any website accessible from hyperlinks on the Company's website (or any other website) is incorporated into, or forms part of, this announcement.

Technical Glossary

Assay	The laboratory test conducted to determine the proportion of a mineral within a rock or other material. Usually reported as parts per million which is equivalent to grams of the mineral (i.e. gold) per tonne of rock
Breccia	A rock made up of angular rock fragments cemented together by a finer grained matrix
CIM	Canadian Institute of Mining, Metallurgy and Petroleum whose terminology, definitions and guidelines are an internationally recognised reporting code as defined by the Combined Reserves International Reporting Standards Committee (CRIRSCO) as required by National Instrument 43-101.
Cross-cut adit	A cross-cut adit is a tunnel driven perpendicular to the longest horizontal direction (strike) of an ore or mineralised body, usually constructed to provide access.
Dip	A line directed down the steepest axis of a planar structure including a planar ore body or

	zone of mineralisation. The dip has a measurable direction and inclination from horizontal.
Down-dip	Further down towards the deepest parts of an ore body or zone of mineralisation
Down-throw	Referring to the rock that has moved downwards on a fault relative to the other side.
Foot wall	The rock adjacent to and below an ore or mineralised body or geological fault. Note that
1 oot wan	on steeply-dipping tabular ore or mineralised bodies the foot wall will be inclined nearer to
	the vertical than horizontal.
Grade	The proportion of a mineral within a rock or other material. For gold mineralisation this is
	usually reported as grams of gold per tonne of rock (g/t)
g/t	grams per tonne
Hanging wall	The rock adjacent to and above an ore or mineralised body or geological fault. Note that
3 3 3	on steeply-dipping tabular ore or mineralised bodies the hanging wall will be inclined
	nearer to the vertical than horizontal.
Inferred Mineral Resource	That part of a Mineral Resource for which tonnage, grade and mineral content can be
	estimated with a low level of confidence. It is inferred from geological evidence and
	assumed but not verified geological and/or grade continuity. It is based on information
	gathered through appropriate techniques from locations such as outcrops, trenches, pits,
	workings and drill holes that may be limited, or of uncertain quality and reliability
Indicated resource	that part of a Mineral Resource for which tonnage, densities, shape, physical
	characteristics, grade and mineral content can be estimated with a reasonable level of
	confidence. It is based on exploration, sampling and testing information gathered through
	appropriate techniques from locations such as outcrops, trenches, pits, workings and drill
	holes. The locations are too widely or inappropriately spaced to confirm geological and/or
	grade continuity but are spaced closely enough for continuity to be assumed
Intercept	Refers to a sample or sequence of samples taken across the entire width or an ore body
	or mineralized zone. The intercept is described by the entire thickness and the average
	grade of mineralisation
OZ	troy ounces
kt	Thousand tonnes
Mineral Resource	A concentration or occurrence of material of economic interest in or on the Earth's crust in
	such a form, quality, and quantity that there are reasonable and realistic prospects for
	eventual economic extraction. The location, quantity, grade, continuity and other geological characteristics of a Mineral Resource are known, estimated from specific
	geological knowledge, or interpreted from a well constrained and portrayed geological
	model
Mt	Million tonnes
Open pit mining	A method of extracting minerals from the earth by excavating downwards from the
Open pit mining	surface such that the ore is extracted in the open air (as opposed to underground mining).
OZ	Troy ounce, equivalent to 31.103477 grams
Quartz breccia	Broken fragments of rock cemented together by a network of quartz rock. The quartz is
	deposited from saturated geothermal liquids filling the space between the rock fragments.
Quartz veins	Deposit of quartz rock that develop in fractures and fissures in the surrounding rock. They
	are deposited by saturated geothermal liquids rising to the surface through the cracks in
	the rock and then cooling, taking on the shape of the cracks that they fill.
Reverse circulation drilling	A drilling method in which penetration is achieved through a combined hammer and rotary
_	drilling action and pulverised rock samples are transported to the surface through the
	drilling rods using compressed air. The 1m samples collected for analysis are of sufficient
	quality to be used in a Mineral Resource Estimation.
Strike length	The longest horizontal dimension of an ore body or zone of mineralisation.
Trench	The excavation of a horizontally elongate pit (trench), typically up to 2m deep and up to
	1.5m wide in order to access fresh or weathered bedrock and take channel samples
	across a mineralised structure. The trench is normally orientated such that samples taken
	along the wall are perpendicular to the mineralised structure in order to establish the
	width and grade of the structure.
True width	The shortest axis of a body, usually perpendicular to the longest plane. This often has to
	be calculated for channel or drill samples where the sampling was not exactly
	perpendicular to the long axis. The true width will always be less than the apparent width
H. d	of an obliquely intersect sample.
Up-throw	Referring to the rock that has moved upwards on a fault relative to the other side.
Vein	A sheet-like body of crystalised minerals within a rock, generally forming in a discontinuity
	or crack between two rock masses. Economic concentrations of gold are often contained
\Mollrook	within vein minerals.
Wallrock	The rock adjacent to an ore or mineralised body or geological fault.
Whittle Pit	An open pit mine planning method in which the optimum dimensions of an economic open
	pit are modelled around a mineral resource constrained by various technical and

economic variables.